Part Number Hot Search : 
32100 AO4354 145154 AP9475GM BD5227 HEF4016 AO4354 KL731ET
Product Description
Full Text Search
 

To Download BUH50-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  switchmode  npn silicon planar power transistor the buh50 has an application specific stateofart die designed for use in 50 watts halogen electronic transformers and switchmode applications. this high voltage/high speed transistor exhibits the following main feature: ? improved efficiency due to low base drive requirements: high and flat dc current gain h fe fast switching ? on semiconductor six sigma philosophy provides tight and reproductible parametric distributions ? specified dynamic saturation data ? full characterization at 125 c ??????????????????????? ??????????????????????? maximum ratings ??????????????? ??????????????? rating ??? ??? symbol ????? ????? value ??? ??? unit ??????????????? ??????????????? collectoremitter sustaining voltage ??? ??? v ceo ????? ????? 500 ??? ??? vdc ??????????????? ??????????????? collectorbase breakdown voltage ??? ??? v cbo ????? ????? 800 ??? ??? vdc ??????????????? ??????????????? collectoremitter breakdown voltage ??? ??? v ces ????? ????? 800 ??? ??? vdc ??????????????? ??????????????? emitterbase voltage ??? ??? v ebo ????? ????? 9 ??? ??? vdc ??????????????? ??????????????? collector current e continuous e peak (1) ??? ??? i c i cm ????? ????? 4 8 ??? ??? adc ??????????????? ? ????????????? ? ??????????????? base current e continuous base current e peak (1) ??? ? ? ? ??? i b i bm ????? ? ??? ? ????? 2 4 ??? ? ? ? ??? adc ??????????????? ? ????????????? ? ??????????????? *total device dissipation @ t c = 25  c *derate above 25 c ??? ? ? ? ??? p d ????? ? ??? ? ????? 50 0.4 ??? ? ? ? ??? watt w/  c ??????????????? ??????????????? operating and storage temperature ??? ??? t j , t stg ????? ????? 65 to 150 ??? ???  c ??????????????????????? ??????????????????????? thermal characteristics ??????????????? ? ????????????? ? ??????????????? thermal resistance e junction to case e junction to ambient ??? ? ? ? ??? r q jc r q ja ????? ? ??? ? ????? 2.5 62.5 ??? ? ? ? ???  c/w ??????????????? ? ????????????? ? ??????????????? maximum lead temperature for soldering purposes: 1/8 from case for 5 seconds ??? ? ? ? ??? t l ????? ? ??? ? ????? 260 ??? ? ? ? ???  c (1) pulse test: pulse width = 5 ms, duty cycle 10%. on semiconductor  ? semiconductor components industries, llc, 2002 april, 2002 rev. 3 1 publication order number: buh50/d buh50 power transistor 4 amperes 800 volts 50 watts case 221a09 to220ab style 1: pin 1. base 2. collector 3. emitter 4. collector 1 2 3
buh50 http://onsemi.com 2 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ???? ???? symbol ???? ???? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? off characteristics ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter sustaining voltage (i c = 100 ma, l = 25 mh) ???? ? ?? ? ???? v ceo(sus) ???? ? ?? ? ???? 500 ???? ? ?? ? ???? ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ??????????????????? collector cutoff current (v ce = rated v ceo , i b = 0) ???? ???? i ceo ???? ???? ???? ???? ???? ???? 100 ??? ??? m adc ??????????????????? ? ????????????????? ? ??????????????????? collector cutoff current @ t c = 25 c (v ce = rated v ces , v eb = 0) @ t c = 125 c ???? ? ?? ? ???? i ces ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 1000 ??? ? ? ? ??? m adc ??????????????????? ? ????????????????? ? ??????????????????? emittercutoff current (v eb = 9 vdc, i c = 0) ???? ? ?? ? ???? i ebo ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ????????????????????????????????? ????????????????????????????????? on characteristics ??????????????????? ? ????????????????? ? ? ????????????????? ? ??????????????????? baseemitter saturation voltage (i c = 1 adc, i b = 0.33 adc) (i c = 2 adc, i b = 0.66 adc) 25 c (i c = 2 adc, i b = 0.66 adc) 100 c ???? ? ?? ? ? ?? ? ???? v be(sat) ???? ? ?? ? ? ?? ? ???? ???? ? ?? ? ? ?? ? ???? 0.86 0.94 0.85 ???? ? ?? ? ? ?? ? ???? 1.2 1.6 1.5 ??? ? ? ? ? ? ? ??? vdc ??????????????? ??????????????? collectoremitter saturation voltage (i c = 1 adc, i b = 0.33 adc) ????? ????? @ t c = 25 c ???? ???? v ce(sat) ???? ???? ???? ???? 0.2 ???? ???? 0.5 ??? ??? vdc ??????????????? ? ????????????? ? ??????????????? (i c = 2 adc, i b = 0.66 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 0.32 0.29 ???? ? ?? ? ???? 0.6 0.7 ??? ? ? ? ??? ??????????????? ? ????????????? ? ??????????????? (i c = 3 adc, i b = 1 adc) ????? ? ??? ? ????? @ t c = 25 c ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 0.5 ???? ? ?? ? ???? 1 ??? ? ? ? ??? ??????????????? ??????????????? dc current gain (i c = 1 adc, v ce = 5 vdc) ????? ????? @ t c = 25 c ???? ???? h fe ???? ???? 7 ???? ???? 13 ???? ???? ??? ??? e ??????????????? ??????????????? dc current gain (i c = 2 adc, v ce = 5 vdc) ????? ????? @ t c = 25 c ???? ???? ???? ???? 5 ???? ???? 10 ???? ???? ??? ??? e ????????????????????????????????? ????????????????????????????????? dynamic characteristics ??????????????????? ? ????????????????? ? ??????????????????? current gain bandwidth (i c = 0.5 adc, v ce = 10 vdc, f = 1 mhz) ???? ? ?? ? ???? f t ???? ? ?? ? ???? 4 ???? ? ?? ? ???? ???? ? ?? ? ???? ??? ? ? ? ??? mhz ??????????????????? ? ????????????????? ? ??????????????????? output capacitance (v cb = 10 vdc, i e = 0, f = 1 mhz) ???? ? ?? ? ???? c ob ???? ? ?? ? ???? ???? ? ?? ? ???? 50 ???? ? ?? ? ???? 100 ??? ? ? ? ??? pf ??????????????????? ??????????????????? input capacitance (v eb = 8 vdc) ???? ???? c ib ???? ???? ???? ???? 850 ???? ???? 1200 ??? ??? pf ????????????????????????????????? ????????????????????????????????? dynamic saturation voltage ???????? ? ?????? ? ???????? d y namic saturation ????? ? ??? ? ????? i c = 1 a i b1 =033a ???? ? ?? ? ???? @ 1 m s ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? v ce(dsat) ???? ? ?? ? ???? ???? ? ?? ? ???? 1.75 5 ???? ? ?? ? ???? ??? ? ? ? ??? v ???????? ? ?????? ? ???????? dynamic saturation voltage: determined 1 m s and 3 m s res p ectively ????? ? ??? ? ????? i b1 = 0.33 a v cc = 300 v ???? ? ?? ? ???? @ 3 m s ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 0.3 0.5 ???? ? ?? ? ???? ??? ? ? ? ??? v ???????? ???????? 3 m s respectively after rising i b1 reaches 90% of final ????? ????? i c = 2 a i b1 =066a ???? ???? @ 1 m s ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? ???? ???? ???? ???? 6 14 ???? ???? ??? ??? v ???????? ? ?????? ? ???????? i b1 ????? ? ??? ? ????? i b1 = 0.66 a v cc = 300 v ???? ? ?? ? ???? @ 3 m s ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 0.75 4 ???? ? ?? ? ???? ??? ? ? ? ??? v
buh50 http://onsemi.com 3 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ???? ???? symbol ???? ???? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? switching characteristics: resistive load (d.c. 10%, pulse width = 20 m s) ???????? ???????? turnon time ???????? ???????? i c = 2 adc, i b1 = 0.4 adc i b2 =04adc ????? ????? @ t c = 25 c ???? ???? t on ???? ???? ???? ???? 95 ???? ???? 250 ??? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 0.4 adc v cc = 125 vdc ????? ????? @ t c = 25 c ???? ???? t off ???? ???? ???? ???? 2.5 ???? ???? 3.5 ??? ??? m s ???????? ???????? turnon time ???????? ???????? i c = 2 adc, i b1 = 0.4 adc i b2 = 1 adc ????? ????? @ t c = 25 c ???? ???? t on ???? ???? ???? ???? 110 ???? ???? 250 ??? ??? ns ???????? ? ?????? ? ???????? turnoff time ???????? ? ?????? ? ???????? i b2 = 1 adc v cc = 125 vdc ????? ? ??? ? ????? @ t c = 25 c ???? ? ?? ? ???? t off ???? ? ?? ? ???? ???? ? ?? ? ???? 0.95 ???? ? ?? ? ???? 2 ??? ? ? ? ??? m s ???????? ???????? turnon time ???????? ???????? i c = 1 adc, i b1 = 0.3 adc i b2 =03adc ????? ????? @ t c = 25 c ???? ???? t on ???? ???? ???? ???? 100 ???? ???? 200 ??? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 0.3 adc v cc = 125 vdc ????? ????? @ t c = 25 c ???? ???? t off ???? ???? ???? ???? 2.9 ???? ???? 3.5 ??? ??? m s ????????????????????????????????? ????????????????????????????????? switching characteristics: inductive load (v clamp = 300 v, v cc = 15 v, l = 200 m h) ???????? ???????? fall time ???????? ???????? ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t f ???? ???? ???? ???? 80 95 ???? ???? 150 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 2 adc i b1 = 0.4 adc i b2 = 1 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? ???? ? ?? ? ???? 1.2 1.7 ???? ? ?? ? ???? 2.5 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? i b2 = 1 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 150 180 ???? ? ?? ? ???? 300 ??? ? ? ? ??? ns ???????? ???????? fall time ???????? ???????? ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t f ???? ???? ???? ???? 90 100 ???? ???? 150 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 2 adc i b1 = 0.66 adc i b2 = 1 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? ???? ? ?? ? ???? 1.7 2.5 ???? ? ?? ? ???? 2.75 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? i b2 = 1 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 190 220 ???? ? ?? ? ???? 350 ??? ? ? ? ??? ns typical static characteristics figure 1. dc current gain @ 1 volt 100 10 1 10 1 0.1 0.01 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = -40 c v ce = 1 v figure 2. dc current gain @ 5 volt 100 10 1 10 1 0.1 0.01 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = -40 c v ce = 5 v
buh50 http://onsemi.com 4 typical static characteristics figure 3. collector saturation region 10 1 0.1 10 1 0.1 0.01 i b , base current (ma) i c = 500 ma figure 4. collectoremitter saturation voltage 10 1 0.01 10 1 0.1 0.01 i c , collector current (amps) t j = 125 c t j = 25 c t j = -40 c i c /i b = 3 v ce , voltage (volts) v ce , voltage (volts) t j = 25 c 2 a 4 a figure 5. collectoremitter saturation voltage 10 1 0.01 10 0.1 0.01 i c , collector current (amps) figure 6. baseemitter saturation region 10 1 0.1 10 0.1 0.01 i c , collector current (amps) t j = 125 c t j = 25 c t j = -40 c v ce , voltage (volts) v be , voltage (volts) 1 t j = 125 c t j = 25 c t j = -40 c 3 a 1 a 0.1 0.1 i c /i b = 5 1 i c /i b = 3 figure 7. baseemitter saturation region 10 1 0.1 10 1 0.1 0.01 i c , collector current (amps) v be , voltage (volts) t j = 125 c t j = 25 c t j = -40 c figure 8. capacitance 10000 10 1 100 10 1 v r , reverse voltage (volts) c, capacitance (pf) 100 c ib (pf) c ob (pf) t j = 25 c f (test) = 1 mhz i c /i b = 5 1000
buh50 http://onsemi.com 5 typical switching characteristics figure 9. resistive switching, t on 3000 1000 0 5 2 1 i c , collector current (amps) 4 t, time (ns) 2000 1500 500 t j = 125 c t j = 25 c i c /i b = 3 i boff = i c /2 v cc = 125 v pw = 20 m s figure 10. resistive switch time, t off 4000 0 5 4 1 i c , collector current (amps) figure 11. inductive storage time, t si 4000 2000 0 4 2 1 i c , collector current (amps) 3000 1000 3000 2000 1000 t j = 125 c t j = 25 c i c /i b = 3 3 t j = 125 c t j = 25 c i boff = i c /2 v cc = 15 v v z = 300 v l c = 200 m h figure 12. inductive storage time, t c & t fi @ i c /i b = 3 300 0 4 3 1 i c , collector current (amps) t, time (ns) 200 100 2 t j = 125 c t j = 25 c i boff = i c /2 v cc = 15 v v z = 300 v l c = 200 m h t c t fi 2500 3 i c /i b = 5 t, time (ns) t, time (ns) i c /i b = 3 i c /i b = 5 typical characteristics figure 13. inductive switching, t c & t fi @ i c /i b = 5 4000 2000 0 10 5 3 h fe , forced gain 9 3000 1000 7 , storage time ( t si m s) i c = 1 a t j = 125 c t j = 25 c figure 14. inductive storage time 250 0 4 3 1 i c , collector current (amps) t, time (ns) 100 50 2 t j = 125 c t j = 25 c i boff = i c /2 v cc = 15 v v z = 300 v l c = 200 m h t c t fi 200 150 468 i boff = i c /2 v cc = 15 v v z = 300 v l c = 200 m h i c = 2 a i boff = i c /2 v cc = 125 v pw = 20 m s 23 i c /i b = 5
buh50 http://onsemi.com 6 typical characteristics figure 15. inductive fall time 150 50 10 2 h fe , forced gain figure 16. inductive crossover time 350 150 50 11 5 3 h fe , forced gain 9 250 130 t fi , fall time (ns) t c , crossover time (ns) 140 110 90 70 60 468 t j = 125 c t j = 25 c i c = 1 a 7 t j = 125 c t j = 25 c 120 100 80 i boff = i c /2 v cc = 15 v v z = 300 v l c = 200 m h i c = 2 a i c = 1 a i c = 2 a i boff = i c /2 v cc = 15 v v z = 300 v l c = 200 m h figure 17. forward power derating 1 0 160 100 20 t c , case temperature ( c) 0.8 power derating factor 0.6 0.4 0.2 60 140 second breakdown derating 40 80 120 thermal derating
buh50 http://onsemi.com 7 there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 20 is based on t c = 25 c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c > 25 c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 20 may be found at any case temperature by using the appropriate curve on figure 17. t j(pk) may be calculated from the data in figure 22. at any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. for inductive loads, high voltage and current must be sustained simultaneously during turnoff with the base to emitter junction reverse biased. the safe level is specified as a reverse biased safe operating area (figure 21). this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. typical characteristics figure 18. dynamic saturation voltage time figure 19. inductive switching measurements v ce 0 v i b 90% i b 1 m s 3 m s dyn 1 m s dyn 3 m s figure 20. forward bias safe operating area 10 0.01 1000 10 v ce , collector-emitter voltage (volts) figure 21. reverse bias safe operating area 5 2 0 900 300 v ce , collector-emitter voltage (volts) 4 100 600 1 0.1 i c , collector current (amps) i c , collector current (amps) dc 5 ms 1 ms 10 m s 1 m s 3 1 gain 3 0 v -1.5 v -5 v t c 125 c l c = 500 m h 10 4 0 8 2 0 time 6 8 6 2 4 9 7 5 3 1 135 7 i b i c v clamp t c t fi 90% i c 10% i c 90% i b1 10% v clamp t si extended soa
buh50 http://onsemi.com 8 typical characteristics table 1. inductive load switching drive circuit v (br)ceo(sus) l = 10 mh r b2 = v cc = 20 volts i c(pk) = 100 ma inductive switching l = 200 m h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 rbsoa l = 500 m h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 +15 v 1 m f 150 w 3 w 100 w 3 w mpf930 +10 v 50 w common -v off 500 m f mpf930 mtp8p10 mur105 mje210 mtp12n10 mtp8p10 150 w 3 w 100 m f i out a r b1 r b2 1 m f i c peak v ce peak v ce i b i b1 i b2 figure 22. typical thermal response (z q jc (t)) for buh50 1 0.01 10 0.1 0.01 t, time (ms) 0.1 1 100 1000 r(t), transient thermal resistance (normalized) r q jc (t) = r(t) r q jc r q jc = 2.5 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r q jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 0.05 single pulse 0.5 0.2 0.1 0.02
buh50 http://onsemi.com 9 package dimensions case 221a09 issue aa to220ab notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension z defines a zone where all body and lead irregularities are allowed. dim min max min max millimeters inches a 0.570 0.620 14.48 15.75 b 0.380 0.405 9.66 10.28 c 0.160 0.190 4.07 4.82 d 0.025 0.035 0.64 0.88 f 0.142 0.147 3.61 3.73 g 0.095 0.105 2.42 2.66 h 0.110 0.155 2.80 3.93 j 0.018 0.025 0.46 0.64 k 0.500 0.562 12.70 14.27 l 0.045 0.060 1.15 1.52 n 0.190 0.210 4.83 5.33 q 0.100 0.120 2.54 3.04 r 0.080 0.110 2.04 2.79 s 0.045 0.055 1.15 1.39 t 0.235 0.255 5.97 6.47 u 0.000 0.050 0.00 1.27 v 0.045 --- 1.15 --- z --- 0.080 --- 2.04 b q h z l v g n a k f 123 4 d seating plane t c s t u r j style 1: pin 1. base 2. collector 3. emitter 4. collector
buh50 http://onsemi.com 10 notes
buh50 http://onsemi.com 11 notes
buh50 http://onsemi.com 12 on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and s pecifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scillc data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indem nify and hold scillc and its of ficers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and re asonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized u se, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employ er. publication ordering information japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. buh50/d sensefet is a trademark of semiconductor components industries, llc. literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com n. american technical support : 8002829855 toll free usa/canada


▲Up To Search▲   

 
Price & Availability of BUH50-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X